Problems

1. Write the integral $\int_{1}^{3} \frac{d x}{x}$ as a limit of Riemann sums. Write it using 2 intervals using the different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson's).
2. Find $\int x \sqrt{4 x+5} d x$.
3. Find $\int \ln x d x$.
4. Find $\int e^{x} \cos x d x$.
5. Find $\int x^{3} e^{-x^{2}} d x$.
6. What is the smallest value of n needed to ensure that our numerical approximation method for $\int_{1}^{3} d x / x$ is within $0.0001=10^{-4}$ using the different methods?
7. Find $\int \frac{d x}{x}$.
8. Let a population satisfy the equation $\frac{d N}{d t}=0.53 N$. Find the doubling time.
9. A logistic equation is given by $\frac{d P}{d t}=r(1-P / K) P$. Describe how the solutions depend on the initial value.
10. Describe the dynamics if there is a constant harvesting occurring and how it depends on h.
11. Solve $\frac{d y}{d t}=-t / y$.
12. When can we compare an integral with $\int_{1}^{\infty} \frac{d x}{x^{p}}$ to show convergence? Divergence? And how?

True/False

13. True False One needs to learn the method of mathematical induction in order to find approximations of areas under functions using Riemann sums for a specific n (say $n=5$).
14. True False Antiderivatives are useful in at least three places: solving simple DE's, finding speeds and distances travelled during free-falls, and avoiding using Riemann sums when finding areas after we learn about the Fundamental Theorem of Calculus.
15. True
16. True
17. True
18. True
19. True
20. True
21. True
22. True
23. True
24. True
25. True

False
Bounding $f(x)$ on $[a, b]$ from above and below by some constants M and m produces only an estimate of $\int_{a}^{b} f(x) d x$.
26. True False Geometric areas can be, after all, negative if they appear underneath the x-axis and above some function $f(x)$.
27. True False We can turn limits of Riemann sums into definite integrals and vice versa.
28. True False The formula for the area of a right trapezoid appears in the geometric interpretation of the definite integral $\int_{-12}^{-7} x d x$.
29. True False When proving the "baby" definite ILL士 and IL* ${ }^{*}$, we need to descend all the way "down" to limits of Riemann sums, and apply along the way the corresponding LL \pm and $L L^{*}$ c.
30. True
31. True False

False
(hat if you start with a function $f(x)$, integrate $f(u)$ from a to x , and then differentiate with respect to x (assuming all these operations are OK), you will get back the original function $f(x)$.
32. True False The "area-so-far" function $F(x)=\int_{a}^{x} f(u) d u$ is >0 when $f(x)$ increases, and it is <0 when $f(x)$ decreases.
33. True False A valid PST says that if two functions are equal, then their derivatives are equal and also their integrals are equal (assuming that each exists), so one may attempt to take derivatives (or integrals) on both sides of the equality.
34. True
35. True False $\quad(\ln |x|)^{\prime}=1 /|x|$ for all $x \neq 0$.
36. True False Some ideas for substitution that work well in a number of examples are substituting what is under a radical, the denominator of a fraction, and an expression whose derivative appears in the numerator.
37. True False Checking your answers after having done substitution is a waste of time.
38. True False The "area-so-far" function $F(x)=\int_{a}^{x} f(u) d u$ is concave up where $f(x)$ is increasing, and it is concave down where $f(x)$ is decreasing.
39. True False There are two different ways to calculate definite integrals by SR (substitution rule): forget temporarily about the bounds of integration, find an antiderivative, and use FTCI; or go directly forward with SR while not forgetting to change the bounds of integration.
40. True False After having done IP (integration by parts), checking your answers by differentiation is a waste of effort since you have already used a valid method(s) to calculate these integrals.
41. True False To justify IP on indefinite integrals, we applied PR (product rule) and FTCI.
42. True False When deciding which of two functions in an integral $\int h_{1}(x) h_{2}(x) d x$ will play the role of $u=f(x)$ and which of $v^{\prime}=g^{\prime}(x)$ in IP, we follow our intuition because integration is a complicated process and there are no guidelines to follow when doing IP.
43. True
44. True
45. True
46. True
47. True False The Trapezoidal Rule sum is the average of the Right Endpoint and Left Endpoint sums for $\int_{a}^{b} f(x) d x$.
48. True False To "estimate an approximation" means to "find out at most how far it can be from the exact value," and hence this is not useful since we either don't know the exact value, or if we knew it, we wouldn't be even approximating, much more so estimating an approximation of it.
49. True
50. True
51. True False To find out how far we have to go with the number of subintervals n of $[a, b]$ in order to ensure that our approximation is close enough to the true value of $\int_{a}^{b} f(x) d x$, we need to set up an inequality using a formula for the error bounds and solve it for n.
52. True False For the same number n of subintervals, the Midpoint Rule tends to be more precise than the Trapezoidal Rule, but Simpson's Rule is always more precise than the Trapezoidal Rule.
53. True False If a function is concave down, we can obtain an overestimate by applying either the Right Endpoint Rule or the Left Endpoint Rule.
54. True False Infinitely many continuous functions do NOT have antiderivatives in elementary functions, but they still do have antiderivatives, as shown by using the "area-so-far" function and applying FTC II to it.
55. True False We can solve the exponential growth model DE $y^{\prime}(t)=k y(t)$ only by guessing that $y(t)$ is an exponential function.
56. True
57. True
58. True
59. True
60. True
61. True
62. True
63. True
64. True
65. True False We can show that $\int_{5}^{\infty} \frac{1}{x^{1.01}} d x$ converges in at least three ways: by a brute force calculation using the definition of an improper integral, by representing $\int_{5}^{\infty} \frac{1}{x^{1.01}} d x$ as part of $\int_{1}^{\infty} \frac{1}{x^{1.01}} d x$ and then using a formula from class for the value of the latter integral, or by comparing it with the more familiar to us integral $\int_{5}^{\infty} \frac{1}{x^{1}} d x$.
66. True False If we cannot compute the exact value of an improper integral $\int_{-\infty}^{b} f(x) d x$, we could try to compare it with another integral $\int_{-\infty}^{b} g(x) d x$, but that, if successful, would only tell us if the original integral converges or diverges.
67. True False The value of $\int_{0}^{\infty} \sin x d x$ depends on where we "stop" the variable t when calculating the limit of the proper integrals $\int_{0}^{t} \sin x d x$.
68. True False To show that $\int_{0}^{\infty} e^{-x^{2}} d x$ converges, it is enough to compare it with $\int_{0}^{\infty} e^{-x} d x$.
69. True
70. True
71. True
72. True
73. True
74. True

False If we already know that $\int_{-\infty}^{\infty} f(x) d x$ converges, then we can compute it by choosing symmetric "bus stops"; i.e., as $\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x$; yet, until we know that the integral converges we cannot do this and we must compute instead $\lim _{t \rightarrow-\infty} \int_{t}^{0} f(x) d x+\lim _{t \rightarrow \infty} \int_{0}^{t} f(x) d x$.
75. True False The improper integral $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ converges because the integrand function is even and the integral on the right half on the number line $\int_{0}^{\infty} e^{-x^{2}} d x$ is already shown to converge.
76. True False Integrals can be improper in more than two places, but in this class we will concentrate mostly on improper integrals of functions without infinite discontinuities because PDFs will be generally continuous or piecewise continuous.
77. True False $\int_{0}^{3} \frac{d x}{x-1}=\ln 2$.

