Math 10A with Professor Stankova Worksheet, Discussion #41; Wednesday, 12/6/2017GSI name: Roy Zhao

Problems

- 1. Write the integral $\int_1^3 \frac{dx}{x}$ as a limit of Riemann sums. Write it using 2 intervals using the different methods (left endpoint, right endpoint, midpoint, trapezoid, Simpson's).
- 2. Find $\int x\sqrt{4x+5}dx$.
- 3. Find $\int \ln x dx$.
- 4. Find $\int e^x \cos x dx$.
- 5. Find $\int x^3 e^{-x^2} dx$.
- 6. What is the smallest value of n needed to ensure that our numerical approximation method for $\int_1^3 dx/x$ is within $0.0001 = 10^{-4}$ using the different methods?
- 7. Find $\int \frac{dx}{x}$.
- 8. Let a population satisfy the equation $\frac{dN}{dt} = 0.53N$. Find the doubling time.
- 9. A logistic equation is given by $\frac{dP}{dt} = r(1 P/K)P$. Describe how the solutions depend on the initial value.
- 10. Describe the dynamics if there is a constant harvesting occurring and how it depends on h.
- 11. Solve $\frac{dy}{dt} = -t/y$.
- 12. When can we compare an integral with $\int_1^\infty \frac{dx}{x^p}$ to show convergence? Divergence? And how?

True/False

- 13. True False One needs to learn the method of mathematical induction in order to find approximations of areas under functions using Riemann sums for a specific n (say n = 5).
- 14. True False Antiderivatives are useful in at least three places: solving simple DE's, finding speeds and distances travelled during free-falls, and avoiding using Riemann sums when finding areas after we learn about the Fundamental Theorem of Calculus.

15. True	False	Despite the fact that $(\ln x)' = 1/x$ for any $x \neq 0$, the integral $\int 1/x dx$ for $x \neq 0$ is strictly speaking, not equal to $\ln x + C$ because the function $1/x$ is discontinuous, causing us to use two different constants for the negative and positive real numbers.
16. True	False	The function e^{-x^2} has no antiderivative in the form of an elementary function because no one has been able to find it.
17. True	False	Any continuous function on (a, b) is integrable (i.e., it has an antideriva- tive), but the converse is not true because some continuous functions do not have derivatives.
18. True	False	To show that the rule "Integral of a product is the product of integrals" is flawed it suffices to produce one counterexample where it does not work.
19. True	False	The formula for the area of a trapezoid (the product of the average of the bases and the height) can be shown by adding up the areas of the two triangles into which a diagonal divides the trapezoid.
20. True	False	Riemann sums are somewhat cumbersome tools for finding approxima- tions of areas, yet they are absolutely necessary to link antiderivatives to areas.
21. True	False	To calculate the definite integral $\int_{-5}^{5} \sqrt{25 - x^2} dx$, we must find an antiderivative of $\sqrt{25 - x^2}$ and use the FTC I to evaluate it at the ends of the interval $[-5, 5]$.
22. True	False	There are at least three ways to compute $\int_{-\pi}^{\pi} \sin(x) dx$.
23. True	False	Splitting an integral along its interval as in $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ makes sense only when c is between a and b.
24. True	False	When we do not know an antiderivative of a function and we cannot find the limit of the corresponding Riemann sums on $[a, b]$, searching for a geometric interpretation of the desired definite integral is also pointless.
25. True	False	Bounding $f(x)$ on $[a, b]$ from above and below by some constants M and m produces only an estimate of $\int_a^b f(x) dx$.
26. True	False	Geometric areas can be, after all, negative if they appear underneath the x-axis and above some function $f(x)$.
27. True	False	We can turn limits of Riemann sums into definite integrals and vice versa.
28. True	False	The formula for the area of a right trapezoid appears in the geometric interpretation of the definite integral $\int_{-12}^{-7} x dx$.

29.	True	False	When proving the "baby" definite ILL \pm and IL*c, we need to descend all the way "down" to limits of Riemann sums, and apply along the way the corresponding LL \pm and LL*c.
30.	True	False	FTCI says that if you start with a function $F(x)$, then differentiate it, and then integrate it (assuming all these operations are OK), you get back the original function $F(x)$.
31.	True	False	FTCII says that if you start with a function $f(x)$, integrate $f(u)$ from a to x, and then differentiate with respect to x (assuming all these operations are OK), you will get back the original function $f(x)$.
32.	True	False	The "area-so-far" function $F(x) = \int_a^x f(u) du$ is > 0 when $f(x)$ increases, and it is < 0 when $f(x)$ decreases.
33.	True	False	A valid PST says that if two functions are equal, then their derivatives are equal and also their integrals are equal (assuming that each exists), so one may attempt to take derivatives (or integrals) on both sides of the equality.
34.	True	False	The Substitution Rule is really ILLo because it undoes for antideriva- tives what CR does for derivatives.
35.	True	False	$(\ln x)' = 1/ x $ for all $x \neq 0$.
36.	True	False	Some ideas for substitution that work well in a number of examples are substituting what is under a radical, the denominator of a fraction, and an expression whose derivative appears in the numerator.
37.	True	False	Checking your answers after having done substitution is a waste of time.
38.	True	False	The "area-so-far" function $F(x) = \int_a^x f(u) du$ is concave up where $f(x)$ is increasing, and it is concave down where $f(x)$ is decreasing.
39.	True	False	There are two different ways to calculate definite integrals by SR (sub- stitution rule): forget temporarily about the bounds of integration, find an antiderivative, and use FTCI; or go directly forward with SR while not forgetting to change the bounds of integration.
40.	True	False	After having done IP (integration by parts), checking your answers by differentiation is a waste of effort since you have already used a valid method(s) to calculate these integrals.
41.	True	False	To justify IP on indefinite integrals, we applied PR (product rule) and FTCI.
42.	True	False	When deciding which of two functions in an integral $\int h_1(x)h_2(x) dx$ will play the role of $u = f(x)$ and which of $v' = g'(x)$ in IP, we follow our intuition because integration is a complicated process and there are no guidelines to follow when doing IP.

43.	True	False	If in the integral $\int h_1(x)h_2(x) dx$ we see that $h_1(x)$ has a simpler (or comparable in difficulty) antiderivative while $h_2(x)$'s derivative is simpler than $h_2(x)$, we go for IP with $u = f(x) = h_2(x)$ and $v' = g'(x) = h_1(x)$.
44.	True	False	If in the integral $\int h_1(x)h_2(x) dx$ each of the functions $h_1(x)$ and $h_2(x)$ has equally complicated derivatives and integrals as itself, then there is no point in applying IP, since it will turn the integral into an equally hard integral.
45.	True	False	When one of the functions $h_1(x)$ and $h_2(x)$ in the integral $\int h_1(x)h_2(x)dx$ is x^2 and we want to solve the problem via IP, then we must set $u = f(x) = x^2$, because if we do $v' = g'(x) = x^2$ this will make $g(x) = x^3/3$, which is more complicated than x^2 and hence it will complicate our problem.
46.	True	False	The formulas for the error bounds for the various approximation rules for $\int_a^b f(x) dx$ can be used to find the exact errors for these approximations.
47.	True	False	The Trapezoidal Rule sum is the average of the Right Endpoint and Left Endpoint sums for $\int_a^b f(x) dx$.
48.	True	False	To "estimate an approximation" means to "find out at most how far it can be from the exact value," and hence this is not useful since we either don't know the exact value, or if we knew it, we wouldn't be even approximating, much more so estimating an approximation of it.
49.	True	False	Simpson's Rule uses degree 4 polynomials to better approximate the shape of the graph of $f(x)$, as evidenced by the fourth derivative and the 4th power n^4 in the formula for the error of the Simpson's approximation: $ E_S \leq \frac{K_4(b-a)^5}{180n^4}$.
50.	True	False	The larger the difference between the maximum and the minimum of $f'(x)$ on $[a, b]$, the bigger the estimates of the errors for E_L and E_R will turn out to be.
51.	True	False	To find out how far we have to go with the number of subintervals n of $[a, b]$ in order to ensure that our approximation is close enough to the true value of $\int_a^b f(x)dx$, we need to set up an inequality using a formula for the error bounds and solve it for n .
52.	True	False	For the same number n of subintervals, the Midpoint Rule tends to be more precise than the Trapezoidal Rule, but Simpson's Rule is always more precise than the Trapezoidal Rule.
53.	True	False	If a function is concave down, we can obtain an overestimate by applying either the Right Endpoint Rule or the Left Endpoint Rule.
54.	True	False	Infinitely many continuous functions do NOT have antiderivatives in elementary functions, but they still do have antiderivatives, as shown by using the "area-so-far" function and applying FTC II to it.

55.	True	False	We can solve the exponential growth model DE $y'(t) = ky(t)$ only by guessing that $y(t)$ is an exponential function.
56.	True	False	The logistic model DE is a modification of the exponential growth model, taking into account that environmental resources may be limited to allow unrestricted exponential growth forever.
57.	True	False	To solve the logistic model DE $P'(t) = kP(1 - \frac{P}{K})$, we need to integrate both sides and apply integration by parts on the RHS.
58.	True	False	The logistic model DE can be modified to account for a constant harvesting rate h by subtracting h from the RHS of the DE.
59.	True	False	The growth rate of $P(t)$ in the logistic model is the logarithmic derivative of $P(t)$.
60.	True	False	The relative growth rate in the exponential decay model remains constant for all t .
61.	True	False	The method of separable DE can be applied only when the RHS of a DE $\frac{dy}{dt} = f(y,t)$ can be somehow written as a product of a function in y alone and a function in t alone.
62.	True	False	The half-life of a radioactive element during exponential decay depends on the initial amount of this element.
63.	True	False	We can get a pretty good idea of the solutions to the harvesting mod- ification of the logistic model DE $P'(t) = kP\left(1 - \frac{P}{K}\right) - h$ by factoring the quadratic polynomial in P on the RHS and studying where it is positive, negative, or 0.
64.	True	False	In the modified the logistic model $\frac{dP}{dt} = kP(t)\left(1 - \frac{P(t)}{K}\right) - h$, there is a value of the harvesting rate h for which $P(t)$ has a unique equilibrium, above which all solutions are decreasing to this equilibrium and below which the population becomes extinct.
65.	True	False	We can show that $\int_5^\infty \frac{1}{x^{1.01}} dx$ converges in at least three ways: by a brute force calculation using the definition of an improper integral, by representing $\int_5^\infty \frac{1}{x^{1.01}} dx$ as part of $\int_1^\infty \frac{1}{x^{1.01}} dx$ and then using a formula from class for the value of the latter integral, or by comparing it with the more familiar to us integral $\int_5^\infty \frac{1}{x^1} dx$.
66.	True	False	If we cannot compute the exact value of an improper integral $\int_{-\infty}^{b} f(x)dx$, we could try to compare it with another integral $\int_{-\infty}^{b} g(x)dx$, but that, if successful, would only tell us if the original integral converges or diverges.
67.	True	False	The value of $\int_0^\infty \sin x dx$ depends on where we "stop" the variable t when calculating the limit of the proper integrals $\int_0^t \sin x dx$.

68. True	False	To show that $\int_0^\infty e^{-x^2} dx$ converges, it is enough to compare it with $\int_0^\infty e^{-x} dx$.
69. True	False	If $g(x) \leq f(x)$ on $[a, \infty)$ and $\int_a^{\infty} f(x) dx$ converges, then $\int_a^{\infty} g(x) dx$ also converges.
70. True	False	Improper integrals in Statistics are used, for example, to compute the areas under probability distribuition functions.
71. True	False	The quadratic formula is useful when factoring the RHS of the DE $\frac{dP}{dt} = kP(t)\left(1 - \frac{P(t)}{K}\right) - h.$
72. True	False	A semistable equilibrium is obtained for the modified logistic model when the harvesting constant h is such that the quadratic equation in $P, kP\left(1 - \frac{P}{K}\right) - h$, has a unique root for P .
73. True	False	The value of a convergent two-sided improper integral $\int_{-\infty}^{\infty} f(x) dx$ for a continuous function $f(x)$ may depend on where we split the integral as a sum of two one-sided improper integrals $\int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx$; however, the divergence of such an integral does NOT depend on the particular <i>a</i> we choose.
74. True	False	If we already know that $\int_{-\infty}^{\infty} f(x) dx$ converges, then we can compute it by choosing symmetric "bus stops"; i.e., as $\lim_{t\to\infty} \int_{-t}^{t} f(x) dx$; yet, until we know that the integral converges we cannot do this and we must compute instead $\lim_{t\to-\infty} \int_{t}^{0} f(x) dx + \lim_{t\to\infty} \int_{0}^{t} f(x) dx$.
75. True	False	The improper integral $\int_{-\infty}^{\infty} e^{-x^2} dx$ converges because the integrand function is even and the integral on the right half on the number line $\int_{0}^{\infty} e^{-x^2} dx$ is already shown to converge.
76. True	False	Integrals can be improper in more than two places, but in this class we will concentrate mostly on improper integrals of functions without infinite discontinuities because PDFs will be generally continuous or piecewise continuous.
77. True	False	$\int_0^3 \frac{dx}{x-1} = \ln 2.$